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Computer programs for high-current beam transport in
accelerators

I /"

Brendan B. Godfrey
Mission Research Corporation, Albuquerque, NM 87106. USA

Numerical techniques exist for modeling particle beam dynamics in high current
acceierators at several levels of fidelity. Equilibria can be determined with beam
envelope codes. particle ray-tracing, Vlasov equilibrium solvers, and single-disk par-
ticle cocies. The linear stability of these equilibria is addressed with dispersion re-
lations solved numerically, linearized PIC codes, and single- and multi-component •
beam centroid programs. Beam nonlinear dynamics are investigated with multidi-mensional PIC codes employing either the complete electromagnetic field equations

* or various approximations to them. Each of these options is discussed, and several
examples are provided. .:: .. ::/

I. INTRODUCTION "i_

A. Accelerator Types

Historically, high energy particle accelerators were developed as research tools for nuclear and

high energy physics research. These accelerators were low current devices for which the beam

4P dynamics could be modeled computationay with a small number of noninteracting particles.

Spacecharge, wakefield, and other corrections were added to the calculations as the currents of

interest gradually increased. Several sophisticated yet reasonably fast-running computer programs

-, now exist for modest current, high energy accelerators; they are described in the chapter by

t R. Cooper.
-:Z ince the 1960's high current, moderate energy, pulsed-diode electron accelerators have been

built, principally for materials research and flash radiography. More recently, similar techniques

have been used to create intense light ion beams for fusion purposes. Self-consistently treating

* ,beam-generated fields is critical for accurate numerical simulation of high current diodes, and even

the earliest steady-state codes included first-principles calculations of electrostatic and azimuthal

magnetic fields. Time-dependent diode codes, borrowed from plasma physics, also include self-

Sfelds in an integral manner. The chapter by J. Quintenz and D. Seidel provides details.

High current. high energy induction accelerators first were studied in the late 1960's as injectors

.or eiectron ring accelerators.' (Research on betatrons. of course, goes back much further.;z3

More recently, renewed investigations have been motivated by heavy ion fusion, free electron

asers. and other applications. Treating induction accelerators numerically is challenging due to

he iarge range of temporal and spatial scales involved. Simultaneously, self-field effects must be

:nciided. especially for low energy sections. A wide variety of computational tools, from simple

,iveiope models to multidimensional particle-in-cell (PIC) simulations, have been developed and

are reviewed in this chapter.
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Several coilective-effect concepts have been proposed to utilize the very large fields which can.

in principle, exist in plasmas to accelerate electrons or ions. Collective ion acceleration. 's laser

beatwave acceleration,6'- and plasma wakefield acceleration are examples. Typically, PIC codes

are used to explore these ideas numerically.

B. High Power Induction Accelerators

A linear induction accelerator achieves high particle energies by applying moderate voltages

4at successive acceleration gaps only while the beam is passing. The gaps are driven by ferrite

cores or dielectric lines, which are in turn energized by conventional pulse power sources. Figure 1

illustrates schematically a portion of the beam line of a ferrite-loaded accelerator. Pavlovskii andS

'4I.

72 - ....

FIG. 1. Simplified representation of induction accelerator beam line, showing two ferrite core

modules. Solenoidal magnetic field coils typically are placed between gaps.

co-workers published extensively on linear induction accelerators during the 1970's.' Two half-

terawatt electron accelerators are in operation, the 10 kA, 42 MeV, ferrite core ATA at Lawrence

Livermore National Laboratory' and the 30 kA, 16 MeV dielectric line RADLAC at Sandia

National Laboratories.'

The acceleration gaps can perturb the beam in several ways. Radial electric fringe fields

may cause radial oscillations,' 2 while the interrupted magnetic image current may trigger trans-

verse displacements.'" The beam breakup instability, associated with TM1 ,,0 gap modes, produces

particularly dangerous transverse oscillations.'" ,S Even in the absence of gaps, the diocotron in-

stability is disruptive for low energy annular beams.'" The resistive wall instability is unimportant.

however.17
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Various recirculation schemes are being considered to reduce the size. weight, and cost of

induction accelerators. '"' Figure 2 depicts a basic design. An electron beam is injected througn

_ _ _ _ __-__ PORT

ELECTRON
BEAM

ACCELERATION
MODULES

FIG. 2. Schematic representation of a racetrack induction accelerator.

an entrance port, passes several times through the acceleration modules, and is extracted through

the exit port. Because injection and extraction with minimal beam loss is difficult even concep-

tually, some designs employ an open helix rather than a closed racetrack geometry.20 Bending

magnetic fields in the curved sections must be ramped up rapidly to keep the beam in the drift

tube. Periodic strong-focusing fields in the bends is sometimes proposed to increase the energy

bandwidth there." The betatron also is a recirculating induction accelerator, although without

discrete gaps. A slowly increasing vertical magnetic both guides and accelerates the beam.:2 In

addition, a toroidal magnetic field, perhaps augmented by periodic strong focusing, is needed to

confine high currents at low to moderate energies." Injection and extraction remain problems.' s

Beam line curvature introduces the negative mass instability,2 6 ,27 which can destroy a recircu-

:ating beam on the usec time scale. Figure 3 shows the typical saturated state of a long wavelength

negative mass mode in a high current betatron. 28 The instability arises because higher energy

beam particles in a bend move to larger radii and consequently fa!l back in the beam relative to

lower energy particles. Particle clumps grow spontaneously, as if like particles attracted. Periodic

strong focusing, mentioned above, slows the negative mass instability but triggers a parametric

three-wave instability similar to the Raman instability of the free electron laser.2 9 Its growth

rate can be very large. Single particle resonances also are potentially serious in recirculating

accelerators, so special care must be taken to avoid magnetic field errors. 30

#A
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* FIG. 3. The (a) z-r and (b) r-8 cross sections of a 10 kA, 5 MeV electron beam in a 1 m radius
betatron 260 nsec after the onset of a long wavelength negative mass instability; Be
1 kG.

Ion-focused transport (IFT) in induction electron accelerators, either separately or in con-
C junction with magnetic transport, has certain desirable features3S: magnetic focusing elements

are unnecessary, the beam breakup instability is suppressed, 32 and the energy bandwidth of mag-

netic bending elements is increased. Injection and extraction for racetrack geometries remain

problems, although more possible solutions exist. 33 Low density ionized channels can be created

by lasers, low energy electron beams, or electrical discharges. In an experiment at Sandia National

Laboratories, a 10 m ion channel was produced with a 1 A, 500 V electron beam, and a 15 kA,

1 MeV electron beam guided by the channel through three 900 bends. 34 The most serious poten-

tial difficulty for IFT is the ion resonance instability.1 ,36 It can, at a minimum, be postponed by

using heavy ions, like Xenon.

Experiments on the PULSELAC device have demonstrated that electron neutralization in ion

accelerators also is effective.3 ' Extensive reviews of high current induction accelerators can be

found in the proceedings of a recent NATO Advanced Study Institute. 31

C. Numerical Models

Beam dynamics in induction and other high-current accelerators can be treated numerically

in a variety of approximations. Beam equilibria often are computed economically with envelope

codes. Steady-state particle ray-tracing codes are useful in modeling diodes and short trans-

port sections. If the beam particle equilibrium distribution is approximately known (in terms

of constants of motion), then the beam current and field radial profiles are easily determined

numerically. Finally, radially-resolved single disk 'C codes are used to obtain the evolution of

the beam equilibrium when beam properties vary slowly through the pulse.

Beam stability properties in an accelerator can be determined simply by solving numerically

an analytical linear dispersion relation, if it is known. Alternatively, linearized PIC codes are

I'
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fairly efficient at providing the growth rates and field structure of -hree-dimensional instabilities

* for specified one-dimensional (typically, radially-resolved) equilibria. These two procedures yield

*- instability growth rates at fixed points in the accelerator. The linear development of transverse

,i oscillations due to, for instance, the beam breakup instability as the beam travels through the

entire acceierator can be modeled efficiently by treating the beam as a string of rigid disks, and

the gap fields as lumped circuit elements. (Early stages of the negative mass instability have

been handled in the same way as well.) Beam thermal effects sometimes can be introduced by

representing the beam by multiple sets of interlaced disks. If required, the disk radii can evolve

* according to the envelope equations mentioned above.

At some point, adding more and more physics to simple numerical models becomes unproduc-

tive, and PIC codes should be used instead. This is particularly true, if the nonlinear evolution

of instabilities is important. Though expensive to employ, PIC codes describe the interaction

of beam particles with applied and self-consistent electromagnetic fields in microscopic detail.

-" Typically, PIC accelerator simulations are performed in two-dimensional r-z geometry, although

-. three-dimensional calculations sometimes are necessary. Single disk PIC codes resolved in r-O

can be used to investigate long wavelength transverse instabilities. When electromagnetic waves

are unimportant, employing the Darwin field approximation saves some time. The frozen field

* approximation could be applied to plasma wakefield calculations.

II. EQUILIBRIUM AND QUASI-EQUILIBRIUM COMPUTATIONS

" A. Beam Envelope Codes

* In most cases L''-y < 1 for relativistic electron beams in accelerators, although not necessarily

- in diodes. (V is the beam current normalized to 17 kA, -- = (1 - V') - /I is the particle relativistic

energy normalized to its rest mass, and V is the particle velocity normalized to the speed of light.)

As a result V_ <K V T, and the paraxial approximation that changes in V, do not cause changes in

V, can be invoked. Applying the virial theorem to the beam transverse dynamics then yields a

simple differential equation for the beam rms radius, R."9

d d P E:Pe , .R yU
---R-F (1)

dt dt -yR 3  4-y R

Auxiliary quantities are the normalized emittance e,

E r v ' 2'r2 V2 !, (2)

and the self-field function U,

U (E, - [ - f] (3)

P# is the particle angular momentum normalized to rnc, j, qB, ,'rnc is its gyrofrequenc., F

is any applied radial acceleration, and f is the charge neutralization fraction provided by a



background piasma. Current neutralization could be incorporated in Eq. (3) as weil. Note "",a'

Eq. 41) reduces to the singie particle radial equation of motion for c smail.

Equation (1) as it stands is dissipationiess, and the normalized emittance is assumed constant.

In reality, singie particle scattering causes a slow growth in emittance." as do weak instabilities.

In addition, phase-mix damping due to a spread in single particle oscillation frequencies leads to

a gradual decrease in d-R dt' with a corresponding increase in e." These corrections usually can

be ignored in accelerator calculations.

One of many problems to which Eq. (1) has been appiied is the chopping of the initially contin-

uous beam in the PHERMEX standing-wave RF accelerator at Los Alamos National Laboratory."

The effects of apertures and RF focusing fields as well as RF accelerating fields are included. De-
spite the simplicity of the model, agreement between code predictions and experimental measure-

ments is good. Figure 4 illustrates typical output for an individual micropulse out of a sequence

of several. Caiculations take less than a minute on a minicomputer.
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' FIG. 4. PHERMEX beam current (Ib), energy (-), radius (rb), and divergence (aD) versus RF
phase as predicted by XLR8R code.

The envelope model also can be used to represent one particle species in a multispecies hybrid

model. For instance, the SEE code at Lawrence Livermore National Laboratory, which is used to

investigate secondary electron expulsion from an IFT channel, describes the electron beam with

an envelope equation and the channel electrons with discrete particles.4"

B. Steady-State Ray-Tracing Codes

Long-puise electron and ion diodes are treated efficientiv by ray-tracing codes with applied

alnd self-consistent felds." These codes aiso can be used for steady-state beam transport :n

6
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accelerator segments. At each iteration a few hundred beam particles are transported aiona their

entire trajectories on the computational mesh using fields determined on the previous iteration.

and their charge and current contributions accumulated. The static beam fields then are recom-

puted from the charge and current distributions. This process is repeated a few dozen times until

convergence is achieved. Only about a minute of CRAY-1 computer time is needed. Often the

output is used to initialize other computer programs.4 6 Particle ray-tracing codes are described

more fully in the chapter by J. Quintenz and D. Seidel.

C. Kinetic Equilibrium Codes

Any cylindrically symmetric beam equilibrium can be expressed as a distribution function

F(H. P., Ps) of the particle energy and canonical axial and angular momenta.'

; .: .:H f -o )! 4 1
D(4)

P. p. - .4 (r) 15)
'.

Pe = rI"pe -- Aa(r) (6)

All the beam properties can be determined from F. The scaler and vector potentials appear-
ing in Eqs. (4)-(6) are given in terms of the beam charge and current densities by the usual

expressions,

Id d
- -- - 0 -47rp (7). r drrar

ld d

j ----r.4* -41rJo {

rdr ar

dr r dr
The charge and current densities are, in turn, given by integrals over the distribution function.

" p =J Fd3 p (10)

I

/ V Fd'p 11(

J# J VFd3 p 12)

Usually, it is more convenient to perform the integrals over the constants of motion instead of the

kinetic momenta. The Jacobian of the transformation is , rp,. Care must be taken in evaluating

the integrals near radial turning points. where p, 0.
as

II,
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In the absence of instabilities, reasonable guesses can be made for the particle distribution

.unction in an induction accelerator. Since canonical angular momentum is conserved, the P4

distribution is determined by injector properties. For a shielded injector (i.e., B' = 0), P = 0

and F is proportional to 6(Pg). More generally, the P0 distribution is estimated by soiving

'(r) = Pe for r at the cathode and then substituting for r in n-(r) rB' at the cathode. The

H distribution is obtained with equal ease: H is approximately constant for all particles at the

injector and increases by a constant amount at each gap. Finally, the spread in P, is determined by

the angular scatter in the beam particles, which is small. One plausible expression is exp(P, T),

where T prip p j 2 is proportional to the Bennett temperature. ' " ' (T can be made a -

function of Pe, if a strong correlation exists between the particle scatter angle and radius.) In all.

we nave an expression of the sort

F (H, P., Pe) Cb(H - Ha) exp (P,/ T) {n!rB,} (r.e - (Pe)) 13)

Equations 14 -( 12) are easily solved numerically. Density profiles obtained from the computer

orogram ORBIT for four simple beam distribution functions are shown in Fig. 5." Convergence

F p P z p  ) 2 ( P z p z0° ) ( p - p . ) F ( P z P ) =  5 ( P - P z 0 )
FPZ P. SPZ Z 0 P;-0 FPZ 5p Z 0

n n
0 0

r r

o oaP - bP
P P z - P  )5(P" - P . ° )  F (P P ) = e Z

n0

r r

FIG. 3. lample density profiles for monoenergetic beams, obtained by solving Eqs. (4)-(12) with
the indicated distribution functions.

r%

.s achieved in about ten iterations. which can be done in a few seconds on a CRAY-1 computer.

'Jquiibrla obtained in this way have been used to initialize some of the linear and nonlinear PIC

8



codes discussed later. Incidentally, the distribution C . 6(H - HD) • exp(P, T) is a nonparaxiai

generalization of the Bennett distribution.

ORBIT has been employed in magneticaily insulated ion diodes as well. Finite temperature

effects, gas prefill, and electron injection with nonzero energy were investigated, and both axial

and azimuthal applied magnetic fields were considered.51 Using ORBIT eliminated the need for

manN of the assumptions and approximations necessary in the analytic treatment of magnetic

insulation.

D. Single Disk Particle Codes

The particle constants of motion are changed, if an abrupt transition occurs in the external
focusing fields: a dynamic calculation is necessary to obtain the new beam equilibrium. This

is particularly simple in the case of relativistic beams, for which the effects of the transverse
self-fields (e.g., E, and Be) nearly cancel. The beam then is represented as a single disk of a few
hundred noninteracting particles subject only to the applied fields. Such codes can be very fast,
even for transport over long distances. (Single disk particle codes in which transverse seif-fields

4are retained are, in fact, PIC codes, discussed in a subsequent section.)

The WIRE code at Lawrence Livermore National Laboratory is a good example."2 It is used
routinely to compute ETA and ATA beam transport in various focusing systems. (The ETA
accelerator, now disassembled, was a 8 kA, 5 MeV prototype for ATA.) Among the elements

considered are solenoidal magnetic lenses, ion channels, grounded wires centered on the axis. and
metal foils. For the centered conducting wire the radial electric field is fixed by demanding that

the potential between the wire and the drift tube be zero, which requires a simple integration over
the disk density profile. Fields associated with focusing foils were derived by Adler."3 A typical

1280 particle run with numerous focusing elements over 600 cm takes about 30 sec on a CRAY-1

computer.

DISC, a similar program at Sandia National Laboratories, has been used to optimize matching

of the RADLAC beam onto an IFT channel." The experimental configuration modeled is shown

in Fig. 6. A 20 kA, 16 MeV, annular electron beam enters from the left in vacuum along a 17 kG

U, axial magnetic field. The beam was born at an immersed cathode and so has significant canonical
angular momentum; it is in the slow mode of rotation. The beam then enters a region of rapidly

decreasing magnetic field, where it spins up and begins to expand. The expansion is arrested by
a pair of focusing foils, and the beam finally is captured by the IFT channel at the right.

Figure 7 is a sequence of three particle plots illustrating the evolution of an initially off-
center beam. Little of the beam current is lost at the transition despite the large initial offset.

Moreover, the beam is centered by the IFT channel within 100 cm of transport, although its

emittance increases substantially. DISC computations such as this consume only a few minutes

of minicomputer time.

41,
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C: FIG. 6. Experimental geometry for DISC code simulation of RADLAC beam extraction from
magnetic guide field and capture by IFT channel.
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FIG. 7. Cross sections of an initially offset RADLAC beam at (a) 0 cm, (b) 40 cm. and (c) 100 cm
after extraction from a 17 kG guide field into an IFT channel, computed by the DISC
code for the geometry depicted in Fig. 5. The outer dashed circle is the drift tube, and

the inner is the beam RMS radius relative to the drift tube axis.
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*. 5*miiar single disk codes have been empioved to study electron beam expansion in air ,ue

- to scattering. 5 The Moiere or Keil-Zeitier-Zinn: formalism should be utilized, depending or.

whether many or few scattering events occur in a betatron waveiength.

*III. LINEAR STABILITY COMPUTATIONS

A. Dispersion Relation Codes

f the beam equilibrium is not too complicated, it usually is possible to describe the growtn

, of linearly unstable modes by a dispersion relation F(--,k,a), where is the (complex} mode

:requencv, k is its wavenumber, and a the set of parameters describing the beam and accelerator.

Peak growth rates of absolute instabilities are obtained as Im('--) for the zeroes of F. maximized

over k.5' Peak spatial growth rates of convective instabilities sometimes are given by the temporal

growth rates divided by the corresponding group velocities, &.'3Ok. again maximized over k. More

* vzen. a saddle point analysis is required. The convective growth of the resistive wall instability

an indiuction accelerator can be derived by this method, for instance. 5

, Complex zeroes of locally analytic functions are easily obtained iteratively by Muller's

. rmethod. 0 In essence, the algorithm fits a quadratic curve to three values of the function and

..hen employs the curve to estimate the location of a zero. At each iteration the function is evalu-

2" ated at the estimated zero from the preceding cycle, and a new estimate made based on this and

tr'he two preceding function evaluations. A zero typically can be determined to a relative accuracy

U of L0- by this method in six to ten cycles. Subroutines implementing Muller's method are widely

available, one can be obtained from the author. 61

" Aithough Muller's method can be applied to polynomial functions, the Vieta formula solved by

he Newton-Raphson method is more efficient."2 Moreover, it gives all the zeroes simultaneously.U
Many Impiementations are available, some accommodating repeated zeroes.6 3 There are, of course,

-rany more techniques for finding zeroes of functions than the two mentioned here.

The dispersion function need not be known analytically to apply Muller's method, if it can

*e computed numerically with sufficient accuracy. An example is the GRADR code, which
d etermines the normal modes of cylindrically symmetric, radially inhomogeneous, particle beams

.n the laminar flow approximation.64 The cylindrical equilibrium is evaluated from six nonlinear,

coupled, algebraic and first-order differential equations. Four follow from Maxwell's equations

Dius the fluid equations, while two can be specified arbitrarily to select a desired equilibrium. '

,The two constraint equations should. of course, be physically realizable. One constraint almost

Aiways is appropriate: total particle energy, kinetic plus potential, must be constant across the

beam and equal to the injection energy. As a second constraint, typically we let the current density

pronie of the beam be specified at injection. Conservation of canonical angular momentum then

,ietermines the current density profile within the accelerator drift tube. The resulting system of

,,quations is solved iteratively. Convergence is achieved after a few dozen cycles, uniess the beam

very near tne space charge limit.

IlA
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Given an equilibrium determined in this or any other way. GRADR then soives '.'W

sponding iinearized equations to obtain eigenmodes and eigenvaiues. The linear equation 1:"M
:ourth-order Sturm-Liouville sstem in radius. The equations are integrated twice from trw Lx>-

to the outer wall with distinct arbitrary choices for the eigenfunction values at the axis...

to the two boundary conditions there. A Fehlberg fourth-fifth-order Runge-Kutta routine

employed. Arbitrary linear combinations of the two solutions then are used to evaluate !ne tv,

boundary conditions at the wall, and the determinant for the unknown coeffcients serves as tnw

dispersion function to which Muller's method is applied. Solutions can be obtained at te rate :

one per second on a CRAY-1 computer.

GRADR was used extensively in designing the RADLAC acceierator. "i7 Tvpical frequencies

and growth rates for the resistive wall instability are shown in Fig. 8. Note the existence :

10
6.00: 1.50
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FIG. S. Predicted (a) frequencies and (b) growth rates of the m = 1 transverse resistive waii
instability of a 100 kA, 25 MeV annular electron beam propagating along a 20 kG guide

field in a 2.5 cm radius stainless steel drift tube. Straight lines in (a) are the edges of
cyclotron and space charge resonance bands due to the variation of beam parameters
with radius.

,ranch points straight lines in Fig. 8(a), due to radial inhomogeneity in the beam density. High

accuracy must be demanded of the differential equation solver when zeroes lie near branch points.

as is the case here.

GRADR originally was written to investigate collective ion acceleration. In many collective

acceleration concepts the wave phase velocity is controlled by adiabatically varying some external

parameter a, such as the guide field strength6" or the drift tube radius.6 9 The corresponding

12
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, .. ane in wave ,ampiitude can De caiculated :rom conservation of wave energy. whcn is an oDt:o:

n- te coue.

L B. Linearized PIC Codes

The stability o more complicated equilibria, particularly those in which kinetic effects are

::Y:porant. can De established with linearized PIC codes. In such models equilibrium fields and

pat:cie orbits are obtained from nonlinear PIC codes or by other means ie.g., the ORBIT code.

:scussed eariier . Then, perturbations to the equilibrium orbits due to wave fields are accumu-
ated aiong the inperturbed orbits and used as source terms for the wave fields themselves. This

eap-trog procecdure in time is similar to that of standard PIC codes.

T he iinear:zed particle equations of motion are much more complicated than their noninear

* , ou.:e, parts. .owever. Form.allv.

P, E1 -, B-" B, -. X, .6 (E 2  K, B,) 6 X

V = P1 " P1 P) P; 1

-V (16

A savings is achieved, therefore, only if significantly fewer particles are needed, and the effective

dimensionaiity of the problem is reduced.

The iinearized PIC code KMRAD, for example, realizes both of these savings. 2 Cylindrically

s-symmetric, possibly slowly evolving, beam equilibria are determined by a one-dimensional. radi-

aliv resoived, noniinear PIC code embedded in KMRAD. Three-dimensional linearized quantities

aiso are resoived radially on a spatial mesh but are Fourier decomposed in z and 8: one (k ,rnj

- node is treated at a time. The instability growth rate of the fastest unstable wave with the se-

ected mode numbers is determined from the exponential growth of field energy in the simulation.

Field and current radial profiles also are available. Thus, KMRAD simulates three-dimensional

-.nearized dynamics but requires computer resources comparable to those of a one-dimensional

code. Of order 1000 particles are followed. Answers are obtained with one to two minutes of

CRAY-1 computer time.

KMRAD was employed recently to predict two-stream instability growth rates in IFT channels

:or recirculating accelerators . ' A comparison between KMRAD kinetic and cold-beam analytical

results for a channel over-dense bv a factor of two is in Fig. 9. Agreement with growth rates from

the IVORY three-dimensional PIC code, described later, is good. In under-dense channels the

eiectron-eiectron instability is replaced by a much slower eiectron-ion instability. The code aiso

has been exercised on resistive instabilities in much higher density channels.

-.' 13
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FIG. 9. Growth rates of the m =1 two-stream instability between a 450 A, 35 MeV, 0.23 cm
radius electron beam and electrons of an 1 cm. radius IFT channel with line density
initially twice that of the beam.
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C. Single-Component Beam Centroid Codes

. The previous two subsections described methods of obtaining instability growth rates wit!:

good accuracy at fixed points in an accelerator. Often, it is more desirable to obtain the total

V instability growth with less accuracy as the beam propagates the length of the accelerator. This

necessitates a simplified description of the beam dynamics. The beam breakup instability and

most other m = 1 modes take the form at small amplitudes of rigid transverse displacements of

-, the beam. Consequently, the beam can be represented as a string of rigid disks moving forward at

a specified velocity but free to move sideways. Interaction with cavity modes and other sources of

instability likewise can be represented simply by lumped parameter models. Self-fields are treated
in the long wavelength approximation.

The beam centroid equation of motion is

* d d d 2v--- =- 1 -' F (17)
dt 'd dt -R 2

* " where = .V - zY, measures small transverse displacements. The first term on the right side

)f Eq. i 17. represents the magnetic guide field. The second term represents the net image force,

" o:ectric iess magnetic. for a cviindrical drift tube of radius R. The final term includes forces from

nduction modules, etc. Note that increases as the beam accelerates.

The oscillatory force on the beam due to m = I cavity modes giving rise to the beam breakup

- nstabiiitv is given by74

*~-F - 4," W (13)
dt Q dt Q

A separate equation is required for each induction gap, and the force is applied impulsively
',ere. Z is the coupiing impedance, Q the mode quality factor, and ,j0 the mode frequency. The

• :mage displacement instability arises from interruption of beam image currents at the acceleration

F =---- 2(19)
R
2

- For narrow gaps, I is the gap width. Otherwise, I must be computed numerically and is less than

* tre gap width. 3 Finally, finite wall conductivity introduces a phase lag between image charges

and currents. resulting in a distributed force, 6

F 8g vt \'t /t d1 ' (20)

R 3  %U )9t dt'

(erived in the paraxiai approximation. a is the wall conductivity, and g is a geometrical factor

(of order unity. Evaluating the integral is relatively time-consuming.

Codes employing these models were used to design the ATA 7 and RADLAC" accelerators.
I

Figure 10 is the predicted amplification of the beam breakup instability for a 5 kA, 20 MeV. 19

module accelerator design, obtained using the BALTIC code. 8 Note that the instability wave

* packet starts at the beam head and slowly convects back. Growth becomes exponential only late

4I.
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:n time. This caiculation required nearly a minute on a CRAY-1 computer. The code wou x ,

much faster with the resistive wall force. Eq. (20), omitted.

D. Nulti-Component Beam Centroid Codes

To the extent that focusing forces on the beam particles (including self-forces) are not linear

with radius, particle oscillation frequencies are a function of amplitude. Phase-mix damping

of transverse instabilities due to the spread in particle oscillation frequencies can be modeied

within the context of beam centroid codes by treating each beam slice as a modest number of

interpenetrating rigid disks. Disks are assigned effective masses and charges corresponding to the

frequency at which each oscillates and to the portion of the beam each represents, respectiveiy.
Multi-component beam centroid codes are used to simulate electron beam hose instabilities

in IFT channeisao and in air. In the latter context they are described at length in the chapter by

W. Fawley.

IV. NONLINEAR PIC COMPUTATIONS

A. PIC Code Fundamentals

PIC codes determine the time evolution of complex beams and plasmas by computing the

dynamics of many thousands of representative particles (electrons and/or ions) moving in elec-

q0 tromagnetic fields externally applied or produced by the beams and plasmas themselves. Thus.

PIG codes provide the most fundamental and detailed representation possible of plasma prob-

lems. In effect, they solve the Vlasov equation. Of course, this precision comes at the cost of

substantial computer requirements. and for this reason PIC codes should be employed only when

simpler numerical or analytical techniques described previously are inadequate.

The electromagnetic fields are defined on a regular mesh in one, two, or three dimensions.

depending on the symmetry of the problem to be solved. The mesh can be in rectangular.

cylindrical, or other desired geometry. At each time step, new electric and magnetic fields are

computed by advancing the finite difference approximations to Maxwell's equations,

a - V x B - 4irJ (211(9t

9B
- = -_V x E (22)
at

using currents (J) determined from the plasma particle motion on the previous time step. Al-
ternatively, equations for the scalar and vector potentials can be solved. Boundary conditions

are required to define spatial derivatives at the mesh edges. Wave reflecting (i.e., metallic) or

periodic boundary conditions are common choices. More complicated boundaries allow electro-

magnetic waves to be launched into the computational region or to leave it. as described in the

next subsection.

17



Particle momenta (P = -,V), positions (X). and energy - ) are then advanced using the

relativistic equations of motion with the newly computed fields.

P E-V xB 203)

= V 124)

= ( P: -2 1*21)' 25)

(Replace - by 1 for nonrelativistic problems.) The fields appearing in Eq. (23) are those at the

particle location, obtained from the fields at nearby mesh points by (typically, linear) interpo-

lation. When a particle leaves the computational region, it is destroyed or it is returned to the

mesh by some prescribed procedure (e.g. reflected). By the same token, particles can be injected

from boundaries, a feature particularly useful in particle beam simulations. After a particle's new

position and momenta have been determined, its contribution to the plasma currents is obtained
by interpolating V = Pi- to nearby mesh points.

This cycle of advancing fields based on particle currents and then advancing particles based

on the new fields is repeated hundreds of times in a typical simulation. The time step is set by the

smallest time scale in the calculation, which may be the plasma oscillation period, the electron

cyclotron period, or the Courant time (of order the time for a light wave to cross a cell in the

mesh). Progress has been made in the last few years at surmounting the Courant limit, which is

numerical rather than physical in character."' Cell dimensions must be small compared to spatial

scales of interest.

PIC code running times and memory requirements are highly problem dependent. CPU times

on a CRAY-1 computer typically range between 15 minutes and 4 hours, although 20 hour runs

are not unheard of. Corresponding central memory needs vaxy between 2.105 and 4.106 words.

At least two fast. large capacity disks or their equivalent also are needed. Historically, the physics

problems attempted with PIC codes have expanded to consume the maximum resources available

in each generation of computers.

PIC codes usually have extensive graphics output capabilities and operating-system interfaces.

Advances in PIC technique are described in several books 82
,8 as well as in the chapters here by

A. Langdon and A. Mankowsky.

B. Standard PIC Codes

Most any multidimensional PIC code treating both electric and magnetic fields can, with

minor modifications, be applied to beam transport. Beam simulations typically are performed

,n cylindrical geometry. Relativistic particle dynamics, if required and not already available, are

easy to implement. Efficiency is an important consideration: beam simulations tend to be lengthy.

18
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Boundary conditions properly modeling the often complex accelerator structures are part:c-

iiariN important. Figure 11. for instance, is taken from an IVORY code simulation of an -nage

-73

.36

i0.6

0
0 12.4 24.8 37.1 49.6

Z (cm)

FIG. 11. Axisymmetric drift tube geometry from IVORY simulation of image displacement insta-
* bility with 23 kA, 2 MeV, annular electron beam in a 10 kG guide field. Beam dynamics

are nonaxisymmetric.

aispiacement instability experiment. 3 Shaded regions are metal disks: thick horizontal lines pro-

-ecting from the disks are metal foils. Conductors are introduced on the computational mesh

simpiy by setting tangential electric fields to zero on their boundaries. (The other field com-

ponents need not be adjusted on a properly staggered mesh.) A tightly spaced helical coil can

be specified by setting the field component along the winding to zero while leaving the other

components alone.84 Specifically, for a helix of pitch angle w, set E, cos w -*- E, sin w= 0 without

modifying E# sin w - E, cos w. Dielectrics are treated by multiplying E in Eq. (21) by the dielec-

tric constant c. Similarly, bulk resistivity is included by adding the term aE to the left side of

Eq. (21). In so doing, one must be careful not to exceed the Courant limit by allowing a.t to

*, become large, unless integrating factors are used.

If the simulation mesh is not large enough to accommodate the entire accelerator, then com-

putational boundaries through which electromagnetic waves are able to pass without nonphysical

reflections are essential. The standard wave-transmitting boundary condition is

E v a E = 2 E o (26)at ax at
where E is the tangential electric field at the boundary and z is the normal coordinate, pointing

inward. Any electromagnetic wave approaching the boundary with normal phase velocity v leaves
* he mesh without reflection, as can be verified by substituting arbitrary E(t - x/v) into Eq. (26).

Equation (26) also launches waves Eo(t - x,,v) into the computational mesh, if desired. When
the primary source of electromagnetic waves is short wavelength beam fluctuations, setting v to

the beam velocity minimizes spurious noise.

If waves with a spread in phase velocities strike the boundary, at least some of them are

reflected. The reflected wave relative amplitude is (v' - v)/(v" -- v), where v' is the wave phase

velocity normal to the boundary. A more general boundary condition able to transmit waves at

essentially all phase velocities was developed for laser-plasma interaction studies."5 It is relatively

19
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compiex and will not be discussed here. A second alternative for wave absorption is a tnic..

graded resistance placed at the boundary, although a large portion of the computational mesh

can be lost in this way.

An example of multidimensional simulations of accelerators is a recent instability study for high
0 current modified betatrons, performed with the IVORY code. 8 IVORY is a three-dimensionai.

relativistic, electromagnetic PIC code in which fields are Fourier decomposed in the azimuthal di-
rection rather than finite-differenced.8 7 This approach is particularly efficient for problems which

are approximateiy but not exactly axisymmetric, such as transverse oscillations on an axisymmet-
I4! tic beam or toroidal oscillations on an electron ring. Applied to the modified betatron, IPROP

can follow instabilities in the recirculating beam for 100 m in a few hours of CRAY-1 computer

time. A typical negative mass instability result is shown in Fig. 3.

The application of PIC codes to ion beam equilibrium and stability is discussed in the chap-
40 ter by W. EHerrmannsfeldt. Typically, a two-dimensional code is used to follow the transverse

dynamics of a single beam slice as it travels the length of the accelerator.

C. Darwin Model PIC Codes

As noted in Sec. IV. A. . the time step in electromagnetic PIC codes is limited by the Courant
condition. This limitation can be circumvented by implicit methods, some of which are described

in the chapter by A. Langdon. Alternatively, electromagnetic waves can be eliminated entirely, if
they are not necessary to the problem to be solved. Electrostatic calculations are entirely adequate

for many ion beam calculations, for instance. The Darwin model can be applied efficiently, when

inductive effects are important but wave effects are not.

Darwin's approximation to Maxwell's equations is derived formally by expanding the particle-
-eld interaction Lagrangian in powers of Vec, where V is the particle velocity, and retaining

terms through second order. The field equations following from the approximate Lagrangian canbe written in several forms, including 88

E= -V= -4rp (27)

a
V'E, -4rJt (28)

at
aS< B = 41rJ - -E, (29)
at

The subscripts 1" and "t" designate longitudinal and transverse components of the fields and
currents; V. E, = 0. Poisson's equation must be solved to obtain J and, of course, 0.89 Nonethe-

less, the added cost of solving Eqs. (27)-(29) instead of Eqs. (21)-(22) is fully justified by the

larger time step permitted. Numerical noise is less also.

The Darwin model is implemented in the two-dimensional DPC code, used to refine beam
injection and transport systems in the ATA. An interesting issue explored with DPC is acceler-

.1o
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ation of eiectrons from the lFT channel used to guide and stabilize the primary beam. Figure 12.

, :rom this study, shows the accumulated channel electron current and energy at in"duction moduie

50.

1,000 I

0I

ii~b

- :000 -11--

-- 0 2.0 3.0 4.-0 5 .0 . 4.0 ID

time (10 sec) time (10 sec)

FIG. 12. Channel electron current (a) and energy (b) at ATA gap 50, predicted by the DPC code
under certain circumstances.

-* D. PIC Codes with Co-Moving Meshes

When performing simulations of beams propagating in plasma channels, it often is convenient

to use a computational mesh moving with the beam. Conceptually, this is accomplished by a

Lorentz or a Galilean transformation to the beam frame. After a Lorentz transformation, PIC

codes of the sort discussed above can be employed. A Galilean transformation is preferable,

however, when a resistive medium is present or when the range of time scales can be compressed.

The electromagnetic field equations in a coordinate frame moving axially at velocity v are

given by 91

I- F ( 1 , (E , - B,) a - ( t ) (E , - B,) - oE , O B a - J, (30)

a 1 -z(E,-Be)--a -(1-0 (E,a-B,)= E, 31)

a - V) (EI-B,)- a v) (E,-B,)-cE- rB,-J# 32)
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.g.,_ wave axial characteristics in this frame are represented schematically in Fig. 13. -Note that

h he forward-going characteristic crosses a constant-Z grid line before it crosses a constant-T grid

n e. :f A z < c - t')At. Information at (I - 1)Az influences the fields at Az at the same time

.evei in this case, and the Courant limit is relaxed somewhat. If, in addition, the electromagnetic

* coupiing among radial positions at fixed Z and T is treated implicitly, the Courant limit becomes

At < Az (c - t). The simulation time step typically is constrained by particle dynamics under

:hese circumstances.

-his algorithm is implemented in a version of the IVORY code known as IPROP. 1 IPROP

s appiied routinely to studies of relativistic electron beam propagation in low and high den-

sity plasma channels. '4 3 A lumped-parameter plasma conductivity package is available to treat

weakly ionized gases in an Ohm's law approximation. Particle scattering and bremsstrahlung

routines also are provided.

4 A significant savings in computer memory and a moderate savings in computer time can

be achieved for simulations of ultrarelativistic electron beams by employing the frozen field

' approximation. 2 The frozen field equations are obtained from Eqs. (30)-(35) by setting v =c

and dropping time derivatives. Fields are solved at each particle time step by integrating the

* equations in Z from the head of the beam to the tail. Application of the frozen field equations to

simulations of beam propagation in air is reviewed in the chapter by W. Fawley. The frozen field

approximation is useful in analytical work as well, e.g., for the plasma wakefield accelerator.' Be

. aware, however, that the approximation fails for beams passing through metal foils or apertures.

* "Like the Darwin approximation, the frozen field approximation does not treat electromagnetic

radiation.'
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